Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy.

نویسندگان

  • Xiangke Chen
  • Wei Hua
  • Zishuai Huang
  • Heather C Allen
چکیده

Phase-sensitive vibrational sum frequency generation is employed to investigate the water structure at phospholipid/water interfaces. Interfacial water molecules are oriented preferentially by the electrostatic potential imposed by the phospholipids and have, on average, their dipole pointing toward the phospholipid tails for all phospholipids studied, dipalmitoyl phosphocholine (DPPC), dipalmitoyl phosphoethanolamine (DPPE), dipalmitoyl phosphate (DPPA), dipalmitoyl phosphoglycerol (DPPG), and dipalmitoyl phospho-l-serine (DPPS). Zwitterionic DPPC and DPPE reveal weaker water orienting capability relative to net negative DPPA, DPPG, and DPPS. Binding of calcium cations to the lipid phosphate group reduces ordering of the water molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water structure at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic acid revealed by phase-sensitive sum frequency spectroscopy.

Interfacial water structures of aqueous dimethyl sulfoxide (DMSO) and methanesulfonic acid (MSA) were studied by Raman, infrared, and conventional and phase-sensitive vibrational sum frequency generation (VSFG) spectroscopies. Through isotopic dilution, we probed bulk water hydrogen bonding strength using the vibrational frequency of dilute OD in H(2)O. As indicated by the frequency shift of th...

متن کامل

Molecular conformation of DPPC phospholipid Langmuir and Langmuir-Blodgett monolayers studied by heterodyne-detected vibrational sum frequency generation spectroscopy.

Heterodyne-detected (phase-sensitive) vibrational sum frequency generation spectroscopy was used to investigate molecular structures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers on water (Langmuir monolayer) and monolayers on a fused silica substrate (Langmuir-Blodgett [LB] monolayer). The spectral features in the CH stretching region depended on the phase of the Langmuir mo...

متن کامل

Comparisons of The Structure of Water at Neat Oil/Water and Air/Water Interfaces as Determined by Vibrational Sum Frequency Generation

We have employed vibrational sum frequency generation (VSFG) to investigate the structure of water at neat oil/water and air/water interfaces through the OH stretching modes of the interfacial water molecules. We find that at the oil/water interface the prevailing structure of the water molecules is a tetrahedral arrangement much like the structure of ice while at the air/water interface we obs...

متن کامل

Interactions of dimethylsulfoxide with a dipalmitoylphosphatidylcholine monolayer studied by vibrational sum frequency generation.

The interactions between phospholipid monolayers and dimethylsulfoxide (DMSO) molecules were investigated by vibrational sum frequency generation (VSFG) spectroscopy in a Langmuir trough system. Both the head and the tail groups of dipalmitoylphosphatidylcholine (DPPC) as well as DMSO were probed to provide a comprehensive understanding of the interactions between DPPC and DMSO molecules. A con...

متن کامل

Structure and Dynamics of Water at Model Human Lung Surfactant interfaces

We investigated the structure and dynamics of water in contact with a monolayer of artificial lung surfactant (LS), composed of four types of lipids and one protein. The interfacial water is investigated with frequency-domain and time-domain surface sum-frequency generation spectroscopy, in which the vibrational relaxation of specifically interfacial water molecules can be followed. We compare ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 132 32  شماره 

صفحات  -

تاریخ انتشار 2010